About the Cover . . .

Shaded model of an *Arabidopsis thaliana* pistil six hours after pollination.

Daniel S. Jones

Microbiology and Plant Biology
University of Oklahoma

(Left) Outer epidermis of an intact pistil rendered with low angled lighting to enhance shading of cell walls. (Right) Pistil with outer tissue removed to reveal ovules (predominantly red) aligned along the septum (structure in center) with pollen tubes (bright green tubes near ovules) elongated into the pistil interior. Whole pistil was excised, fixed in 4% paraformaldehyde, dehydrated gradually, and cleared and mounted in methyl salicylate (n = 1.53). Pistil was imaged as a series of optical sections using a step size equal to pixel size to produce cubic voxels (3D pixels). Images were taken on a Leica SP8 Scanning Confocal Microscope using a 20× multi-immersion objective with oil. Broad-spectrum autofluorescence was excited using a multiphoton laser set at 840 nm and detected as green (420 nm – 560 nm) and red (584 nm – 720 nm). Fluorescent channels were merged and rendered using the normal shading setting in Imaris® v7.6.

Scale – 150 μm
Table of Contents

President’s Letter ... 1
OMS Officers for 2014-2015 .. 2
Corporate Members ... 3-4
Professional Members ... 4-7
Student Members .. 7-8
Successful Spring Workshop 2014 .. 9-12
Cooling Stage Acquisition for Zeiss Neon at OU 13
Upcoming Microscopy Meetings ... 14
2014 Fall Meeting with OAS ... 15-20
 Keynote Speaker Abstract and Bio 15-17
 Section K: Microscopy Program 18
 Direction to Fall Meeting .. 19
 Maps for Fall meeting .. 20
Abstracts for Timpano Contest ... 21-22
Timpano Award Rules .. 23
OMS Constitution and Bylaws .. 24-27
OMS Membership Application/Renewal Form 28
List of Advertisers .. 29
Advertisements ... 30-41

Greg Strout, Editor
Samuel Roberts Noble Microscopy Laboratory
770 Van Vleet Oval
Norman, OK 73071
Dear OMS Members,

I would like to thank the members of the Oklahoma Microscopy Society for electing me president for 2014-2015. It is a great honor to serve our society in this capacity. I would also like to thank Dr. Jin Nakashima for his fantastic work serving as president this last year. Under his guidance, this year's Spring Meeting at the Samuel Roberts Noble Foundation in Ardmore was a success. The participation in Kid's Night was impressive and the quality of the speakers and vendor exhibition was outstanding. I will work hard to continue the efforts of previous presidents in helping organize the upcoming Spring and Fall Meetings.

I am privileged to be working in a field where the utilization of microscopy has exploded in the last several years. Thin section optical microscopy has long been an essential tool for geologists in the petroleum industry. Now with the shift towards exploiting less porous and less permeable reservoir rocks, there has been a need to bring in new, higher-resolution microscopy techniques. In addition, we are pursuing advanced microscopy technologies such as 3D microscopy, high-resolution large area microscopy, and dynamic microscopy. As such we are finding that we have to be multidisciplinary and borrow ideas from other fields. OMS is a great forum for this as we can learn from other fields, apply this knowledge to our own problems, and share the knowledge we gain. The diversity of scientific disciplines within OMS is one of its greatest attributes.

I look forward to serving OMS as president this next year. My goals as president are to increase and diversify our membership. For the Spring Meeting I hope to arrange speakers from diverse academic fields as well as introduce some emerging microscopy technologies.

Sincerely,

Mark E. Curtis, OMS President, 2014-2015
President: Mark E. Curtis
University of Oklahoma
Petroleum & Geological Engin.
Sasrkeys Energy Center
(405) 325-1719
mcurtis@ou.edu

Past-President: Jin Nakashima
Core Cellular Imaging, Plant Biology Div.
Samuel Roberts Noble Foundation
Plant Biology Division
2510 Sam Noble Parkway
Ardmore, OK 73401
(580) 224-6756
jnakashima@noble.org

President-Elect: Lisa Whitworth
Oklahoma State University
Microscopy laboratory—Venture 1
1110S. Innovation Way
Stillwater, OK 74074
lisa.whitworth@okstate.edu

Secretary-Treasurer: Scott Russell
Dept. Botany and Microbiology
University of Oklahoma
770 Van Vleet Oval
Norman, OK 73019
(405) 325-4391
srussell@ou.edu

Newsletter Editor: Greg Strout
University of Oklahoma
770 Van Vleet Oval
Norman, OK 73019
(405) 325-4391
gstrout@ou.edu

Corporate Rep: Zane Marek
JEOL U.S.A. Inc.
13610 Paisano Circle
Austin, TX 78737
(978) 495-2176
marek@jeol.com

Student Representative: Daniel Jones
Dept. Botany and Microbiology
University of Oklahoma
770 Van Vleet Oval
Norman, OK 73019
(405) 325-4391
danieljones552@ou.edu

Physical Sci. Rep: Matt Lundwall
Phillips 66
168 PL Phillips 66 Research Center
Hwy 60 and 123
Bartlesville, OK 74003
(918)977-5084
Matt.lundwall@p66.com

Biological Sci. Rep: Ben Smith
University of Oklahoma
770 Van Vleet Oval
Norman, OK 73019
(405) 325-4391
benjamin.smith@ou.edu
Corporate Members 2014-2015

Matt Chipman
EDAX INC.
91 McKee Drive
Mahwah, NJ 07430
Fax: (201) 529-3156
(201) 529-6277
Matt.chipman@ametek.com

Angelique Graves
Sales Executive
Leica Microsystems, Inc.
1700 Leider Lane
Buffalo Grove, IL
(713)823-5366
Angelique.graves@leica-microsystems.com

Zane Marek
JEOL U.S.A. Inc.
13610 Paisano Circle
Austin, TX 78737
(978) 495-2176
marek@jeol.com

Kevin M. Cronyn
Hitachi High Technologies America
1401 North 27th Ave.
P.O. Box 612208
Dallas (DFW Airport), TX
75261-2208
(972) 615-9086
Kevin.Cronyn@hitachi-HHTA.com

Mark T. Nelson
Microscopy Innovations
213 Air Park Rd, Suite 101
Marshfield, WI 54449
(715)384-3292
Mark.nelson@microscopyinnovations.com

Melissa Dubitsky
Tousimis Research Corporation
2211 Lewis Avenue
Rockville, MD 20851
(301) 881-2450
mdubitsky@tousimis.com
trc@tousimis.com

Janice G. Pennington
Microscopy Innovations
5200 Sassafras Drive
Fitchburg, WI 53711
(317)420-3676

Christine Frey or Mark Guenter
Hitchfchel Instruments, Inc.
2333 S Hanley Road
St. Louis, Mo 63144
(314) 644-6660
cfrey@hitchfel.com

Eugene Rodek
SPI Supplies
569 E. Gay Street
West Chester, PA 19381
(610) 436-5400 X 109
erodek@2spi.com

Leon Gawlick
McBain Sys./McBain Inst.
6565 MacArthur Blvd. Ste. 225
Irving, TX 75039
(214) 952-5946
lgawlick@mcbainsystems.com

Mark Richardson
Carl Zeiss MicroImaging, Inc.
Thorwood, NY 10594
800-543-1033 VM Box #7275

Steven Goodman
Microscopy Innovations
13 Mark Twain Street
Madison, WI 53705
(608)236-0627
Steven.goodman@microscopyinnovations.com

Cathy Ryan
Micro Star Technologies Inc.
511 FM 3179
Huntsville, TX 77340-2069
(936) 291-6891
800-533-2509
cathy.ryan@microstartech.com

Angelique Graves
Sales Executive
Leica Microsystems, Inc.
1700 Leider Lane
Buffalo Grove, IL
(713)823-5366
Angelique.graves@leica-microsystems.com

James Long
Sales Manager
IXRF Systems, Inc.
3019 Alvin DeVane Blvd.
Suite 130
Austin, TX 789741
(512)386-6100
melissa@ixrfsystems.com

John Haritos
Oxford Instruments America, Inc.
300 Baker Avenue Suite 150
Concord, MA 01742
(978) 369-9933
john.horitos@osinst.com

Stacie Kirsch, EMS/Diatome
P.O. Box 550
1560 Industry Road
Hatfield, PA 19440
(215) 412-8400
sgkcck@aol.com

David Leland
Thermo Electron Corp.
5225 Verona Road
Madison, WI 53771-4495
(970) 266-1166
david.leland@thermo.com

Alan Hollaar
Senior Sales Engineer
Bruker Nano Inc.
12565 Spring Creek Road
Moorpark, CA 93021
(805) 523-1882
alan.hollaar@bruker-nano.com

Mark Richardson
Carl Zeiss MicroImaging, Inc.
Thorwood, NY 10594
800-543-1033 VM Box #7275

Zane Marek
JEOL U.S.A. Inc.
13610 Paisano Circle
Austin, TX 78737
(978) 495-2176
marek@jeol.com

Eugene Rodek
SPI Supplies
569 E. Gay Street
West Chester, PA 19381
(610) 436-5400 X 109
erodek@2spi.com

Stacie Kirsch, EMS/Diatome
P.O. Box 550
1560 Industry Road
Hatfield, PA 19440
(215) 412-8400
sgkcck@aol.com

Chad M. Tabatt
Gatan, INC
5933 Coronodo Ln.
Pleasanton, CA 94588
(925) 224-7318
ctabatt@gatan.com
CORPORATE MEMBERS 2014-2015

Jack Vermeulen
Ted Pella Inc.
P.O. 492477
Redding, CA 96049-2477
1-800-237-3526 Ext. 205
FAX: 530-243-3761
jack-vermeulen@tedpella.com

Tina Wolodkowicz
EDAX/AMETEK
91 McKee Dr.
Mahwah, NJ 07430
(201) 529-6277
Tina.Wolodkowicz@ametek.com

Matt Lundwall
Phillips 66
168 PL PRC
Hwy 60 and 123
Bartlesville, OK 74003
(918)977-5084
Matt.lundwall@p66.com

Stephen Mick, Ph.D.
TEM Business Development
Manager
Gatan Inc.
smick@gatan.com

Kenny Witherspoon
IXRF Systems, Inc.
15715 Brookford Dr.
Houston TX 77059
281-286-6485

Steve Nagy
SEM Business Development
Manager
Gatan Inc.
snagy@gatan.com

Lloyd Walker
Nikon Instruments Oklahoma
Okla.Bioscience/Industrial
Instr.
1955 Lakeway Dr., Suite 250B
Lewisville, TX 75057
888-424-0880
lwalker.Nikon@attglobal.net

PROFESSIONAL MEMBERS 2014-2015

Kenneth Andrews
Department of Biology
East Central University
Ada, OK 74820
(580) 310-5496
kandrews@mailclerk.ecok.edu

Ying Chen
OUHSC
941 Stanton Young Blvd.
Oklahoma City, OK 73104
(405) 271-4629
ying.chen@ouhsc.edu

Laura Bartley
Dept. Botany & Microbiology
770 Van Vleet Oval
University of Oklahoma
Norman, OK 73019-0245
(405) 325-1653
lbartley@ou.edu

William F. Chissoe
1849 Creekside Drive
Norman, OK 73071
(405) 329-0271
williamchissoe@cox.net

Elison B. Blancaflor
Samuel Roberts Noble Fnd.
Plant Biology Division
2510 Sam Noble Parkway
Ardmore, OK 73401
(580) 224-6687
eblancaflor@noble.org

Terry Colberg
OSU Microscopy Laboratory
Venture I
1110 S. Innovation Way
Stillwater, OK 74074
Phone: (405) 744-6765
terry.colberg@okstate.edu

Mark E. Curtis
University of Oklahoma
Petroleum & Geological Engin.
Saskeys Energy Center
(405) 325-1719
mark.e.curtis@ou.edu

Kenneth Andrews
Department of Biology
East Central University
Ada, OK 74820
(580) 310-5496
kandrews@mailclerk.ecok.edu

Ying Chen
OUHSC
941 Stanton Young Blvd.
Oklahoma City, OK 73104
(405) 271-4629
ying.chen@ouhsc.edu

Laura Bartley
Dept. Botany & Microbiology
770 Van Vleet Oval
University of Oklahoma
Norman, OK 73019-0245
(405) 325-1653
lbartley@ou.edu

William F. Chissoe
1849 Creekside Drive
Norman, OK 73071
(405) 329-0271
williamchissoe@cox.net

Elison B. Blancaflor
Samuel Roberts Noble Fnd.
Plant Biology Division
2510 Sam Noble Parkway
Ardmore, OK 73401
(580) 224-6687
eblancaflor@noble.org

Terry Colberg
OSU Microscopy Laboratory
Venture I
1110 S. Innovation Way
Stillwater, OK 74074
Phone: (405) 744-6765
terry.colberg@okstate.edu

Mark E. Curtis
University of Oklahoma
Petroleum & Geological Engin.
Saskeys Energy Center
(405) 325-1719
mark.e.curtis@ou.edu

XinShun Ding
Plant Biology Division
The Noble Foundation
2510 Sam Noble Parkway
P.O. Box 2180
Ardmore, OK 73401
(580) 224-6622
xsding@noble.org
Phoebe J. Doss
EM, Alcon Research, LTD.
6201 South Freeway
Fort Worth, TX 76134-2099
(817) 568-6090
phoebe.doss@alconlabs.com

Terry Dunn
College of Medicine
Dept. of Pathology
OU Health Sciences Center
Oklahoma City, OK 73190
(405) 271-5249
Terry-dunn@ouhsc.edu

Chris Edwards
Halliburton Energy Services
2600 S 2nd Street #0470
Duncan, OK 75536
(580) 251-3270
Chris.edwards@halliburton.com

Steve Fields
Department of Biology
East Central University
1100 E. 14th Street
Ada, OK 74820
(580) 559-5792/5606
sfields@ecok.edu

Warren Finn
Dept. of Pharm/Physics
OSU-Center for Health Sciences
1111 West 17th Street
Tulsa, OK 74107-1898
(918) 561-8267
finn@chs.okstate.edu

Taylor Fore
University of Oklahoma
Department of Zoology
730 Van Vleet Oval
Norman, OK 73019
(405) 325-7450
taylor.fore@ou.edu

Ben Fowler
OMRF
825 NE 13th Street, MS 49
Oklahoma City, OK 73106
(405)271-7245
Ben-fowler@omrf.org

Ginger Hendricks
8804 E. 63rd Street
Tulsa, OK 74133
(918) 294-3992
hendricksgr@yahoo.com

Kirby L. Jarolim
OSU-CHS
Oklahoma State University
1111 W. 17th Street
Tulsa, OK 74107
(918) 561-8265
kirby.jarolim@okstate.edu

Matthew B. Johnson
Dept. Physics & Astronomy
University of Oklahoma
440 West Brooks
Norman, OK 73019-0225
(405) 325-3961 ext. 36106
JOHNSON@MAIL.NHN.OU.EDU

Paige Johnson
Dept. Chemistry & Biochemistry
University of Tulsa
600 S. College
Tulsa, OK 74104
(918) 631-5434
paige-johnson@utulsa.edu

Naji Khoury
CEED, University of Oklahoma
202 West Boyd Street, Room 334
Norman, OK 73019
(405) 325-4236
nkhoury@ou.edu

Katherine M. Kocan
Dept. Vet. Pathobiology
OSU-Stillwater
250 McElroy Hall
Stillwater, OK 74078
(405) 744-7271
katherine.kocan@okstate.edu

Preston Larson
University of Oklahoma
Samuel Roberts Noble Electron Microscopy Laboratory
770 Van Vleet Oval
Norman, OK 73019
(405) 325-4391
plarson@ou.edu

Joanna Ledford
Biochemistry & Mol. Biology
246 NRC
OSU-Stillwater
Stillwater, OK 74078
(405) 744-7822
jledford@biochem.okstate.edu

Tiffany Lenhart
Dept. Botany & Microbiology
770 Van Vleet Oval
University of Oklahoma
Norman, OK 73019-0245
(405) 325-3771
tiffany-lenhart@ou.edu

David London
School of Geology & Geophysics
100 E. Boyd St., 810 SEC
University of Oklahoma
Norman, OK 73019
(405) 325-7626
dlondon@ou.edu

Gary Lovell
ConocoPhillips Petroleum
245a GB
Bartlesville, OK 74004
(918) 661-9691
gary.l.lovell@conocophillips.com

Jeanmarie Verchot Lubicz
OSU-Entomology/Plant Pathology
Noble Research Center, Rm. 127
Stillwater, OK 74078
(405) 744-7895
Verchot.lubicz@okstate.edu

Richard E. Watts
OMRF
825 NE 13th Street, MS 49
Oklahoma City, OK 73106
(405) 271-7245
Richard.E.Watts@omrf.org

Pamela Wood
DEPARTMENT OF BIOMEDICAL
SCIENCE
University of Oklahoma
Norman, OK 73019
(405) 325-7410
pamela.wood@ou.edu

Beverly Yerger
OMRF
825 NE 13th Street, MS 49
Oklahoma City, OK 73106
(405) 271-7245
beverly.ferger@omrf.org
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Madden</td>
<td>Dept. of Geology and Geophysics, University of Oklahoma</td>
<td>Sarkeys Energy Center, Suite 710, Norman, OK 73019</td>
<td>(405) 325-5327</td>
<td>amadden@ou.edu</td>
</tr>
<tr>
<td>Jin Nakashima</td>
<td>The Samuel Roberts Noble Foundation</td>
<td>2510 Sam Noble Parkway, Ardmore, OK 73401</td>
<td>(580)224-6756</td>
<td>jnakashima@oble.org</td>
</tr>
<tr>
<td>Raul Pozner</td>
<td>Institute de Botanica Darwinion</td>
<td>C.c. 22, N1642HYD, Buenos Aires, Argentina</td>
<td>54-11-4743-4800</td>
<td>rpozner@darwin.edu.ar</td>
</tr>
<tr>
<td>Camelia Maier</td>
<td>Dept. of Biology, GRB 328, Texas Women's University</td>
<td>Denton, TX 76204</td>
<td>(940) 898-2358</td>
<td>cmaier@twu.edu</td>
</tr>
<tr>
<td>Richard S. Nelson</td>
<td>Samuel Roberts Noble Foundation</td>
<td>P.O. Box 2180, Ardmore, OK 73402</td>
<td>(580) 224-6625</td>
<td>rsnelson@oble.org</td>
</tr>
<tr>
<td>Paul E. Richardson</td>
<td></td>
<td>1023 South Western Road, Stillwater, OK 74074</td>
<td>(405) 377-4831</td>
<td>speedy154@juno.com</td>
</tr>
<tr>
<td>Leanne Wier May</td>
<td>Rose State College</td>
<td>6420 SE 15th Street, Engineering & Science Division, Midwest City, OK 73110</td>
<td>(405) 733-7553</td>
<td>lwier@rose.edu</td>
</tr>
<tr>
<td>Charlotte L. Ownby</td>
<td>OSU Microscopy Laboratory, Stillwater, OK 74074</td>
<td>1110 S. Innovation Way</td>
<td>(405) 744-8087</td>
<td>charlotte.ownby@okstate.edu</td>
</tr>
<tr>
<td>Ken Roberts</td>
<td>University of Tulsa</td>
<td>600 South College Ave., Tulsa, OK 74104</td>
<td>(918) 631-3090</td>
<td>kroberts@utulsa.edu</td>
</tr>
<tr>
<td>Donna McCall</td>
<td>Halliburton Energy Services</td>
<td>2600 South 2nd Street, Duncan, OK 73533</td>
<td>(580) 251-2083</td>
<td>Donna.McCall@halliburton.com</td>
</tr>
<tr>
<td>Kevin Pargeter</td>
<td></td>
<td>PO Box 177, Jenks, OK 74037</td>
<td>kevinpargeter@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Scott D. Russell</td>
<td>Dept. Botany & Microbiology</td>
<td>770 Van Vleet Oval, University of Oklahoma</td>
<td>(405) 325-4391</td>
<td>sruell@ou.edu</td>
</tr>
<tr>
<td>Bill Meek</td>
<td>Dept. of Anat. & Cell Biology, OSU-Center for Health Sciences</td>
<td>1111 W. 17th St., Tulsa, OK 74107</td>
<td>(918) 561-8258</td>
<td>meekwd@okstate.edu</td>
</tr>
<tr>
<td>Kevin Pargeter</td>
<td></td>
<td>PO Box 177, Jenks, OK 74037</td>
<td>kevinpargeter@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Barbara Safiejko-Mroczka</td>
<td></td>
<td>730 Van Vleet Oval, University of Oklahoma</td>
<td>(918) 631-3090</td>
<td>bsafiejko@ou.edu</td>
</tr>
<tr>
<td>Wilson Merchant-Manch</td>
<td>School of Aerospace & Mech Eng, University of Oklahoma</td>
<td>865 Asp Avenue, Room 208, Norman, OK 73019-1052</td>
<td>(405) 325-1754</td>
<td>wmerchant-merchan@ou.edu</td>
</tr>
<tr>
<td>Dean Phillips</td>
<td>Conoco Phillips</td>
<td>312 South Chickasaw, Bartlesville, OK 74003</td>
<td>(918) 661-8733</td>
<td>dean.phillips@conocophillips.cm</td>
</tr>
<tr>
<td>Richard W. Portman</td>
<td>University of Tulsa</td>
<td>Dept. of Biological Sciences, 600 S. College, Tulsa, OK 74104</td>
<td>(918) 631-3715</td>
<td>richard-portman@utulsa.edu</td>
</tr>
<tr>
<td>Sallie Ruskoski</td>
<td>Northeastern State University</td>
<td>3100 E. New Orleans, Broken Arrow, OK 74014</td>
<td>(918)449-2471</td>
<td>rkoskksi@nsuok.edu</td>
</tr>
<tr>
<td>George B. Morgan VI</td>
<td>Electron Microprobe Lab, School Geology & GeoPhysics</td>
<td>100 E. Boyd St., SEC 810, University of Oklahoma, Norman, OK 73019-1009</td>
<td>(405) 325-1754</td>
<td>Jim_posey@mercmarine.com</td>
</tr>
<tr>
<td>James Posey</td>
<td>Mercury Mercruiser</td>
<td>3003 N. Perkins Rd., Stillwater, OK 74075</td>
<td>(405) 743-6763</td>
<td></td>
</tr>
<tr>
<td>Varsha Shah</td>
<td>Texas Woman’s University, University of Oklahoma</td>
<td>P.O. Box 425799, Denton, TX 76204-5799</td>
<td>(940) 898-2366</td>
<td>vshah@mail.twu.edu</td>
</tr>
</tbody>
</table>
Professional Members 2014-2015

Dachuan Shi
School of Chemical, Biological and Materials Engineering
University of Oklahoma
100 E Boyd, SEC, T-335
Norman, OK 73019
(405)708-8940
D_shi@ou.edu

Kent S. Smith
OSU-CHS
1111 W. 17th St.
Tulsa, OK 74107
(918) 561-8246
kent.smith@okstate.edu

Mike Veldman
Bio Systems Engineering
Room 111 Ag Hall
Oklahoma State University
Stillwater, OK 74078
(405) 744-8392
v mike @ okstate.edu

Reonna Slagell-Gossen
Redlands Community College
1300 S. Country Club Rd.
El Reno, OK 73036
(405) 422-1457
gossenr@redlandscc.edu

Mary R. Whitmore
5544 So. Orcas St.
Seattle, WA 98118
whitmore@newmexico.com
(Lifetime Member)

Ben Smith
University of Oklahoma
770 Van Vleet Oval
Norman, OK 73019
(405) 325-4391
Benjamin.smith@ou.edu

Lisa Whitworth
Oklahoma State University
Microscopy Lab—Venture 1
1110S. Inovation Way
Stillwater, OK 74074
(405) 744-3013

Student Members 2014-2015

Brittany Bolt
OSU Center for Health Sciences
1111 W 17th Street
Tulsa, OK 74107
Brittany.bolt@okstate.edu

Daminda Hemal Dahanayaka
Dept. Physics and Astronomy
University of Oklahoma
440 W. Brooks St., Room 131
Norman, OK 73072
(405) 325-3961 X36564
damindadahanayaka@ou.edu

Robert Nicholas
University of Oklahoma
OU ECE Department
1708 Southwest Drive
Norman, OK 73071
rnicholas@ou.edu

Felix De La Cruz
University of Oklahoma
865 Asp Avenue, Room 212
Norman, OK 73071
(405) 812-9898
delacruz@ou.edu

Emanuela Ene
Department of Physics
OSU-Stillwater
Stillwater, OK 74078
(405) 744-2821
eene@okstate.edu

Craig Quinalty
University of Oklahoma
1100 Oak Tree Avenue, Apt G2
Norman, OK 73072
(405) 589-0734
craigq@ou.edu

Rinosh Joshua Mani
OSU College of Veterinary Health Sciences
250 McElroy Hall
Stillwater, OK 74078
(405)612-0554
rinosh.mani@okstate.edu

Leslie M. Quinalty
University of Oklahoma
Dept. of Chemistry & Biochemistry
620 Asp Avenue, Room 208
Norman, OK 73019
(405) 325-4811
leslieq@ou.edu

Danny Maples
Oklahoma State University
Department of Chemistry
13 Summit Circle
Stillwater, OK 74045
(405)334-6902
dannym@okstate.edu
Ernest S. Sanchez
University of Oklahoma
Dept. of Physics & Astronomy
440 W Brooks Street
Norman, OK 73019
(405)812-0448
Ernest.s.sanchez-1@ou.edu

Pranshoo Solanki
University of Oklahoma
334 Carson Engineering Center
202 W. Boyd Street
Norman, OK 73019
(405) 325-9453
pranshoo@ou.edu

Ravendra Chauhan
Oklahoma State University
Dept. of Entomology and Plant Pathology
127 Noble Research Center
Stillwater, OK 74078
(405)612-7074
Ravendra.chauhan@okstate.edu

J. Byron Sudbury
OSU Graduate Student
P.O. Box 2282
Ponca City, OK 74602-2282
(580) 762-3346
jschemistry@hotmail.com

Wesley D. Tennyson
University of Oklahoma
CBME
100 E Boyd, SEC, T-335
Norman, OK 73019
(405)325-3957
tennyson@ou.edu

Ting Wang
Oklahoma State University
Center for Health Sciences
1111 W 17th Street
Tulsa, OK 74107
(918)852-2929
Zijia.zhang@okstate.edu

Zijia Zhang
Oklahoma State University
Center for Health Sciences
111 W. 17th Street
Tulsa, OK 74107
(918) 852-9292
Zijia.zhang@okstate.edu
OKLAHOMA MICROSCOPY SOCIETY (OMS)
2014 SPRING WORKSHOP

Correlative Microscopy - Bridging Light and Electron Microscopy

9 a.m.-4:00 p.m. (includes lunch)
Friday, April 4
Noble Foundation Kruse Auditorium
Registration: 8:00 a.m.

Professor Thomas E. Phillips, Director of the Molecular Cytology Core, University of Missouri, will be the keynote speaker

Other Activities
• Optional tours of the Noble Foundation campus
• Kids night with a microscope – April 3 (5:30 p.m. - 7:30 p.m.)
Jin Nakashima, president of the Oklahoma Microscopy Society (OMS), hosted the spring meeting at the Kruse Auditorium on the Samuel Roberts Noble Foundation Campus in Ardmore, Oklahoma.

The Keynote Speaker, Dr. Thomas Phillips, University of Missouri, fields questions after his talk about Correlative Microscopy and antigen sampling.

Dr. Barbara Armbruster from Hitachi High Technologies America spoke on techniques for examining cell monolayers with correlative light and transmission electron microscopy.

Dr. Chris Vega from Leica microsystems spoke about correlative light microscopy.
Successful Spring Workshop 2014
Kids Night with a Microscope...

Jin, Linda, Kevin, and Preston operated the portable Hitachi TM300 SEM’s with Kids Night guests.

Kids Night 2014, a spring meeting outreach program, was once again not only a learning experience, but fun for all involved.

Everyone, even parents, seemed to enjoy looking through microscopes at the pond water station.

Preparing soil samples for observation using a compound microscope.

RGB color perception... How do computer monitors display color? Student investigate RGB pixels on computer monitor with handheld microscope.
Successful Spring Workshop 2014
Kids night...

Investigating fluorescence (above). Successfully completing the light obstacle course means having to use all the lenses, prisms, and gated boxes (right).

Students (above) had the opportunity to use compound light microscopes to view water and soil samples with assistance from experts in those areas as well as operate one of three available Hitachi TM3000 portable scanning electron microscopes via mouse and computer screen (right).
Addition of a Deben Ultra Coolstage to the Zeiss Neon 40 EsB

Microscope at the Microscopy Lab at OU

M.B. Johnson, N. Barry, P.R. Larson
Homer L. Dodge Department of
Physics and Astronomy, University of Oklahoma Norman, OK 73019

The microscopy lab at the University of Oklahoma has recently installed a Deben Ultra Coolstage Specimen Cooling Unit onto our existing dual beam Zeiss Neon EsB microscope. This removable attachment allows Peltier heating and cooling capabilities from -50°C to 50°C.

As an initial example of the capabilities of the cooler, figure (a) shows a backscattered electron image of a solid mercury amalgam containing primarily gallium and aluminum impurities at -50°C while figure (b) shows a focused ion beam (FIB) image of a FIB-etched cross structure in the material used as a reference mark. The uneven or rough surface in the exposed cross is likely due to the different FIB etching rates of mercury versus the impurities. A movie (link) was taken of the reference cross structure as the solid amalgam was heated from -50°C which shows the metal melting to a liquid phase at approximately -40°C in line with the melting point of pure mercury which occurs at -38.83°C.

Finally, figure (c) shows a backscattered electron image of a different area on the amalgam surface at -50°C illustrating regions of different metals. Energy dispersive spectroscopy (EDS) mapping was done on this area (figure (d)) to confirm the presence of mercury (shown in green) and gallium (shown in red). The small misalignment between the overlaid EDS map and the backscattered image is due to geometrical effects from EDS mapping on the curved surface of the specimen.

Click to view movie of melting reference structure
Upcoming microscopy meetings . . .

Oklahoma Microscopy Society
Spring 2015 OMS Workshop

INTERNATIONAL Meetings

GOTTINGEN, GERMANY
FOCUS ON MICROSCOPY 2015
MARCH 29 - APRIL 1 2015
January 7-9, 2015
Quantitative BioImaging
Institute Pasteur, Paris, France

Microscopy and Microanalysis

Portland
Oregon
August 3-7 2015

Columbus
Ohio
July 25 - July 28, 2016

St Louis
Missouri
July 23 - July 27, 2017
Northeastern State University
Broken Arrow, OK

Friday, November 7, 2014

Keynote Speaker

Dr. Jay Jerome
Vanderbuilt University

"Scientific Digital Imaging and Digital Image Formats"
Scientific Digital Imaging and Digital Image Formats

Abstract:

Most microscopy is now digital image based, yet many microscopists do not fully understand digital image concepts. Unfortunately, with modern digital imaging it is far too easy to inadvertently alter the image without even knowing that you have done so. The image is the data and not understanding basic "scientific" digital imaging can lead to accumulation of artefactual errors. This talk covers, in an easy to follow manner, the basics of microscopic digital imaging in order to provide the microscopist with sufficient information to avoid common pitfalls that can degrade the quality of your data or introduce spurious information. We will review how to match the microscope parameters and image capture parameters in order to maximize image fidelity. We will also discuss post image processing and how these can affect the image data. Finally, the basics of image formats are critical but not always understood, so we include a discussion of scientifically relevant image formats and how they should be implemented.
2014 Annual Fall Meeting
Keynote Speaker

Dr. Jay Jerome

Cell Imaging Shared Resource
Vanderbilt University Medical Center
Nashville, Tennessee

Biographical Sketch:

Jay Jerome is Associate Professor of Pathology, Microbiology and Immunology and Associate Professor of Cancer Biology at Vanderbilt University. He is Co-Director of the Cell Imaging Shared Resource at Vanderbilt. Jay is a Past-president of the Microscopy Society of America, the Co-Editor of a textbook on confocal microscopy, and an Editor for the journal Microscopy and Microanalysis. He is a fellow of both the Microscopy Society of America and the American Heart Association. Jay’s research focuses on intracellular lipid metabolism and how disruption of normal lipid metabolism contributes to diseases such as cardiovascular disease, diabetes and obesity.
36th Annual Fall Meeting with the Oklahoma Academy of Science
November 7, 2014
Northeastern State University in Broken Arrow

SECTION K: Microscopy
Building: BALA 232

Morning Session – Jin Nakashima, Samuel Roberts
Noble Foundation

9:40 Break

Keynote Address:

10:00 Scientific Digital Imaging and Digital Image Formats. Jay Jerome, Vanderbilt University Medical Center.

11:00 OMS Business Meeting and Election

12:30 Academy Luncheon (over Ugly Bug Contest)

† OMS Timpano Award Competition
Northeastern State University in Broken Arrow

Directions to Fall Meeting

From Northwest Oklahoma
From the Cimarron Turnpike, connect to Highway 51 near downtown Tulsa (Broken Arrow Expressway). Take the BA Expressway through Tulsa and Broken Arrow to the "Creek Turnpike West" exit (just past the Highway 51 "Coweta" exit). The "Creek Turnpike West" exit will actually take you south to the NSU-Broken Arrow campus. You will see the campus on the right as you approach 101st Street (also called New Orleans Street). Take the 101st/New Orleans Street exit, which will lead you directly to the main campus entrance.

From West or Central Oklahoma
From the Turner Turnpike, take the "Creek Turnpike East" exit, which is just past the Sapulpa exits. This will take you through south Tulsa. After passing the Memorial Street exit, make sure you are in the right lane to remain on the Creek Turnpike through south Broken Arrow (rather than going north on Highway 169). Continue on the Creek Turnpike until it curves north (approximately 6 miles) and you will see the campus directly in front of you. As you approach 101st Street (also called New Orleans Street), the road veers to the right around the campus. Take the 101st/New Orleans Street exit, then turn west (right) on 101st Street to the traffic light at the main entrance of the campus.

From the Muskogee Turnpike
As you arrive in east Broken Arrow, take the "Creek Turnpike West" exit, which will actually take you south to the NSU-Broken Arrow campus. You will see the campus on the right as you approach 101st Street (also called New Orleans Street). Take the 101st/New Orleans Street exit, which will lead you directly to the main campus entrance.

From the South
From Highway 75, take the "Creek Turnpike East" exit, which is just a few miles north of the Glenpool traffic light on Highway 75. This will take you through south Tulsa. After passing the Memorial Street exit, make sure you are in the right lane to remain on the Creek Turnpike through south Broken Arrow (rather than going north on Highway 169). Continue on the Creek Turnpike through south Broken Arrow until it curves north, and you will see the campus directly in front of you. As you approach 101st Street (also called New Orleans Street), the road veers to the right around the campus. Take the 101st/New Orleans Street exit, turn west (right) on 101st Street to the traffic light at the main entrance of the campus.

From the North
If arriving in the Tulsa area on Highway 75 from Bartlesville, connect with Highway 51 East (Broken Arrow Expressway) near downtown Tulsa. Take the BA Expressway through Tulsa and Broken Arrow to the "Creek Turnpike West" exit (just past the Highway 51 "Coweta" exit). The "Creek Turnpike West" exit will actually take you south to the NSU-Broken Arrow campus. You will see the campus on the right as you approach 101st Street (also called New Orleans Street). Take the 101st/New Orleans Street exit, which will lead you directly to the main campus entrance.

From the Northeast
From the Will Rogers Turnpike, take the "Creek Turnpike West" option as the Will Rogers Turnpike terminates near Catoosa. Continue south on the Creek Turnpike to the 101st Street (also called New Orleans Street) exit. This exit will take you directly to the main campus entrance.
We will be meeting in building G, the Liberal Arts Building, on the north end of campus. Use the parking lot on the north side of the building.
THREE-DIMENSIONAL VISUALIZATION OF THE FEMALE GAMETOPHYTES OF *ORYZA SATIVA* AND *ARABIDOPSIS THALIANA* USING MULTIPHOTON MICROSCOPY

Daniel S. Jones¹, Joshua M. Chesnut¹, Benjamin E. Smith², Greg Strout², Scott D. Russell¹,²

¹Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK 73019
²Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma Norman, OK 73019

Flowering plants accomplish sexual reproduction through haploid generations known as gametophytes. The female gametophyte (embryo sac) is encased in multiple cell layers of diploid sporophytic tissue (ovary and ovule), typically necessitating sectioning for observation with light microscopy. The advent of two-photon and three-photon microscopy used in conjunction with optical clearing of tissues provides a technique for the analysis of thick specimens such as these at high-resolution, without the need for manual sectioning. In this study we imaged the embryo sacs of *Oryza sativa* ssp. *japonica* and *Arabidopsis thaliana* at various stages during early fertilization with a Leica TCS SP8 multiphoton-equipped microscope. Using optical sections spaced such that each voxel (3D pixel) has equal, cubic dimensions in all axes, high-resolution three-dimensional images can easily be obtained. Such an imaging system allows 3D reconstructions of thick specimens without any of the artifacts inherent to sectioning and serial reconstructions. Ovaries and ovules were fixed and then cleared/mounted in methyl salicylate (n = 1.53) and excited using a multiphoton laser set at 830 nm. Broad-spectrum autofluorescence emission was detected using two HyD detectors, set at 350 nm–550 nm and 550 nm–750 nm or using a two channel photo multiplier tube in the non-descanned position. A spectral scan analysis of emission data from multiple structures within the tissue reveals differential patterning of autofluorescence, and merged channels provide contrasting and complementary images of the three-dimensional organization of these embryo sacs, providing new insights into sexual reproduction and subsequent development in plants.
PHOTOBLEACHING-COUPLED FLUORESCENT LIFETIME IMAGING: DETECTING FORSTER RESONANCE ENERGY TRANSFER TO IDENTIFY PROTEIN INTERACTIONS

Zachary Myers, Roderick Kumimoto, Benjamin Smith, and Ben Holt

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019 USA

Plants perceive and respond to light through the integration of multiple distinct transcription factor signaling networks. Efforts to understand the photochemistry of light perception and to identify primary effectors and integrators of light signaling have progressed significantly; however, mechanistic descriptions of these processes and identification of additional proteins involved has lagged. Study of the NUCLEAR FACTOR-Y (NF-Y) proteins indicates a role in light signaling, and in order to identify that role, a robust method to detect protein-protein interactions through Forster Resonance Energy Transfer (FRET) has been developed. By combining and improving on two FRET measurement techniques, acceptor photobleaching (AB) and Fluorescent Lifetime Imaging (FLIM), we are able to detect FRET while simultaneously controlling for false positives associated with each individual measurement regime. Briefly, we are able to collect AB measurements through Fluorescence Recovery After Photobleaching (FRAP), where the changes in donor and acceptor intensity are used to control for autofluorescence. By comparing the donor fluorescent protein’s lifetime before and after the FRAP regiment, we are able to control for the variation in the cellular environment between samples and the convolution of the acceptor and donor lifetimes. Use of this method to detect FRET is very robust, and it is currently in use to elucidate the role of NF-Y in light signaling.
OMS Best Student Paper Award:

THE TIMPANO AWARD

This Award, commemorating the late Dr. Peter Timpano, is based on student presentations at the Fall OMS meeting, which is held annually in conjunction with the meeting of the Oklahoma Academy of Science (OAS). All applicants for the Timpano Award must be members of OMS at the time that they declare themselves as candidates for the Award and must be enrolled in a degree program in an institution of higher learning in Oklahoma.

First Prize: All-expense-paid trip for the first place winner to the national meeting of the Microscopy Society of America (MSA) or Microbeam Analysis Society (MAS) to present a paper or poster on his or her research. The total travel allowance (including MSA or MAS contribution, if any) will be $1,100.00, with all reasonable expenses reimbursed upon presentation of receipts. In addition, a $100.00 cash scholarship to be used toward the student's research career will be awarded. (If the student is selected as a finalist in the MSA Presidential Student Awards Competition, then MSA will provide registration and airfare, and OMS will provide an additional $200.00 bonus.)

Second Prize: A $100.00 cash scholarship will be awarded to the second place winner for use toward the student's educational/research expenses. This and the above award are tax exempt if used for educational/research expenses.

The best student paper will be evaluated on the basis of the following criteria:

1. Quality of presentation
2. Quality of slides and micrographs
3. Scientific approach
4. Materials and methods
5. Value of contribution to scientific knowledge
6. Merit of microscopic work
7. Quality of submitted abstract

Rules for the Competition: This competition shall be judged by a committee of at least 3 OMS members appointed by the OMS Executive Board; those having a conflict of interest will be excluded. Votes shall be cast by secret-ballot and will be accepted by the Secretary-Treasurer (or designated OMS Officer) after the final competing presentation. (OMS reserves the right to set minimum standards for the best paper and may choose to select a second place winner without selecting a first place winner, at its discretion.)

Conditions of Award: Upon winning first place, the awardee must, by December 15 of the current year, submit a letter of intent or declination regarding attendance at the MSA or MAS meetings. If the awardee notifies OMS that he or she declines to attend MSA or MAS for any reason, a $100 prize will be awarded in lieu of the trip to the meeting, provided that the declination is received within the stated time limit. If the winner declines the first place prize, the second place winner will be offered the opportunity to attend the meeting and present a paper as provided above. A student may compete for the Timpano Award throughout his or her career, but may attend an MAS or MSA meeting at OMS expense only once. Students winning additional Timpano competitions will receive a $100 cash scholarship.
Article I. NAME
The name of this organization shall be the Oklahoma Microscopy Society. The acronym shall be OMS. OMS is a non-profit organization.

Article II. PURPOSE
The purpose of OMS shall be the advancement of the science of microscopy in Oklahoma and nationally by:

- encouraging the dissemination of knowledge of microscopy including its technology and instrumentation.
- promoting the free exchange of ideas and data among interested individuals and
- encouraging interdisciplinary interaction between microscopists.

Article III. MEMBERSHIP
Section 1. Types:

- Regular membership shall be open to any person who has an interest in microscopy.

- Corporate membership shall be open to any commercial or non-profit organization that has an interest in microscopy. A member organization may designate one representative to receive all privileges of membership. Other members of the same organization may become regular members.

- Honorary membership may be given to a person named an Honorary member by vote of the Executive Committee.

Section 2. Enrollment: Any eligible person or organization may make application for membership to the Executive Committee of OMS. Completed application forms shall be submitted to the Secretary-Treasurer of OMS with one year’s dues.

Section 3. Privileges: All members have the right to vote at any business meetings held by OMS and to hold elective office.
Section 4. **Dues:**

Annual dues shall be proposed by the Executive Committee and affirmed by a vote of the membership.

Changes in dues adopted by the membership shall become effective on the next July 1 after the adoption. Dues shall become payable on July 1 of each year for the following twelve months.

Any member delinquent in payment of dues for a period of six months shall be dropped from membership. Members thus dropped may be reinstated thereafter by paying one year’s delinquent dues and the current year’s dues.

Article IV. MEETINGS

At least one business meeting per year shall be held. The time(s) and place(s) of such meetings shall be designated by the Executive Committee and duly announced. Business meetings shall be conducted according to Robert’s Rules of Order.

Article V. OFFICERS

Section 1. The officers of OMS shall be a President, a President-Elect, a Secretary-Treasurer, a Member-at Large for Biological Sciences, a Member-at Large for Physical Sciences, a Member-at Large for student members, and Member-at-Large for Corporate Members. These officers shall perform the duties prescribed by these bylaws and by the parliamentary authority adopted by the Society.

Section 2. **Duties:**

a. The President shall preside at all meetings of the Executive Committee and business meetings of the OMS and promote the interests of OMS both within the state and nationally.

b. The President-Elect shall assist the President, substitute for him/her when necessary, perform any duties assigned by the President and be responsible for organizing the regular spring workshop/seminar.

c. The Secretary-Treasurer shall maintain records of OMS and communicate with members. This officer shall be custodian of OMS funds, collect all dues, notify members delinquent in membership and account for OMS funds in accordance with accepted business practice.

d. Members-at-Large shall represent their respective constituents.
Section 3. **Term of Office:**

The President, President-Elect, and Members-at-Large shall each serve for one year beginning July 1 and ending June 30 of the following year.

The Secretary-Treasurer shall serve for two consecutive years beginning July 1 and ending July 30 of the second following year.

Section 4. **Election:** Officers shall be elected as prescribed in Article VII of these bylaws.

Section 5. **Vacancies:** If the President cannot serve, the President-Elect shall immediately succeed to that office. If the President-Elect or any other officer cannot serve for any reason, the Executive Committee shall appoint a person to serve pro temp in the vacant office. Any such appointed officer shall be replaced by one duly elected at the next annual election in May.

Article VI. EXECUTIVE COMMITTEE

Section 1. **Composition:** The Executive Committee shall consist of the officers of OMS, plus the Newsletter Editor ex officio who shall be without vote.

Section 2. **Duties:**

The Executive Committee shall conduct the business of OMS as specified herein and otherwise as necessary, and shall advise the membership on matters concerning the management of OMS. It shall appoint the Newsletter Editor.

The Executive Committee shall hold not fewer than two meetings annually, on call of the President or a majority of its members.

Article VII. ELECTIONS

Section 1. Nominations of officers except the President shall be made by a nominating Committee appointed by the President and approved by the Executive Committee. This Committee shall consist of five persons, at least one of whom is from the field of Biological Sciences and one from the field of Physical Sciences. Nominations may be solicited from the membership at any time.

Section 2. The Nominating Committee shall present a slate of consenting candidates (two for each office) to the President prior to the spring general business meeting. The President and Secretary-Treasurer shall announce this list to the membership at the spring general business meeting. Additional nominations of persons willing to serve may be solicited from the floor at this time.
Section 3. The Secretary-Treasurer shall prepare and email ballots to all members by May 15 and shall accept ballots until May 31.

Section 4. Ballots shall be counted by at least two Executive Committee members and may be reviewed by the entire board if deemed necessary. In each case the candidate receiving the largest number of votes shall be declared elected. Any tie shall be resolved by vote of the combined Executive and Nominating Committees. Results shall be announced by the Secretary-Treasurer at the next business meeting or by email to all members.

Article VIII. AD HOC COMMITTEE

The President shall appoint ad hoc committees as necessary or helpful in managing affairs of OMS. Committee members shall be considered automatically discharged at the end of the appointing President’s term of office unless the new President specifically requests that they continue. The committee itself shall continue until its purpose has been fulfilled or it is dissolved by vote of the executive board or the membership at large.

Article IX. AMENDMENTS

Section 1. Amendments may be suggested at any OMS business meeting. However, amendments to these bylaws may be formally proposed in only two methods:

By the Executive Committee or

By petition of ten percent of the members.

Section 2. The proposed amendment shall then be promptly submitted by email to the membership by the Secretary-Treasurer, along with the signed statement of reasons for support and/or opposition. Returned ballots shall be accepted by the Secretary-Treasurer for three weeks after the date of emailing. The Executive Committee shall count the ballots and the amendment(s) shall be declared ratified if a two-thirds majority of the votes cast is favorable.

Section 3. Any member who so desires may be present at the counting of such ballots.

Article X. DISSOLUTION

In the event of the dissolution of the OMS, upon the discharge of all its debts and obligations, any remaining assets shall be given to such tax-exempt scientific organization as the Executive Committee may determine. In no case shall any assets be used for the direct benefit of any member of OMS.
Oklahoma Microscopy Society Membership Application/ Renewal Form

Name: ______________________________________

Business Phone: ______________________________

FAX: ______________________________

Email: ______________________________

Institution: ______________________________

Address: ______________________________

Check here if Address is New/Revised: ___

Membership in Affiliated Societies: Microscopy Interests:

MSA ______ Physical Sciences ______
MAS ______ Biological Sciences ______
OAS ______ Other ______

Membership Dues:
Type:
 Corporate ($50.00)_____
 Professional ($15.00)_____
 Student ($5.00)_____

Amount Enclosed:_____

Please enclose a check for one year’s dues (July 1, 2014 - June 30, 2015) made out to:
OMS” or “Oklahoma Microscopy Society” and mail to:
Scott Russell, Secretary/Treasurer, OMS
Dept. of Microbiology and Plant Biology
University of Oklahoma
770 Van Vleet Oval
Norman, OK 73019
Email: srussell@ou.edu
We thank the following for their support of the Fall 2014 Newsletter

Microstar Diamond Knives

Electron Microscopy Sciences

JEOL

EDAX

Ted Pella

Diatome Diamond Knives
EMS HAS IT...

an economical solution for fluorescence...

NIGHTSEA

FLUORESCENCE VIEWING SYSTEMS

Fluorescence has become the tool of choice for studying many animal models on upright and inverted research stands. New technology from NIGHTSEA™ now extends fluorescence to your existing standard routine stereo microscopes, where its specificity and sensitivity provide an ideal assist for life science applications.

THIS SIMPLE SYSTEM IS EXCELLENT FOR:

- Quick screening of your fluorescent genotypes – Xenopus, Drosophila, zebrafish, C. elegans, …
- Genotype sorting
- Fluorescence-aided dissection, injection, or micromanipulation
- Freeing up your research-grade fluorescence microscopes for more demanding work
- New faculty start-up budgets
- Bringing fluorescence into the teaching laboratory

PLEASE CONTACT US FOR MORE INFORMATION

Electron Microscopy Sciences

P.O. Box 550 • 1560 Industry Rd.
Hattfield, Pa 19440
Tel: (215) 412-8400 • Fax: (215) 412-8450
email: sgkcck@aol.com
or stacie@ems-secure.com

www.emsdiasum.com
PELCO® SEM PIN STUBS

Especially designed for correlative microscopy, corroborative SEM investigations and repetitive SEM imaging/analysis and specimen preparation, square PELCO® Q Pin Stubs have an easy to locate reference notch on one of the corners. Using the SEM X and Y stage movements and read-outs, each position on the PELCO® Q Stub can be easily indexed to the reference notch. Once the position of a location is recorded with reference to the reference notch, the location can be easily found again using the same SEM, another SEM, or even a FIB system, X-ray imaging system, Auger system, SIMS, light microscope or any imaging system with X-Y and stage movements. It will work with manual, motorized and computerized stages as long as there is a position read-out. Depending on the precision of the stage, the recorded position can be retrieved with an accuracy of +/- 5μm. The reference notch in the corner of the PELCO® Q Stub enables intrinsic indexing – no additional holders needed and the positions are all relative to the notch in the stub.

The sample surface of the PELCO® Q Pin Stubs is square for easy alignment of the sides of the Q Stub with the X and Y movements of the sample stage. An additional advantage is the larger sample surface area; over 20% larger than round stubs. Below the square top, the PELCO® Q Stubs are identical to the conventional round pin mounts and are fully compatible with existing SEM grippers, storage boxes, sample preparation equipment and most multiple pin stub holders.

PELCO® Q SEM Pin Stubs Features and Benefits

- Reference notch for intrinsic indexing
- Square shape for alignment with the X and Y axis of the SEM stage
- Reliable relocation of any position on the Q Stub
- Ideal for correlative microscopy – same locations can be easily found on multiple imaging/analyzing platforms with X-Y axis stage
- Enables corroborative microscopy – share between SEM platforms or re-investigate same position afterwards
- Perfect for repetitive microscopy and repetitive sample prep procedures – exact same position can be easily found and imaged over again
- Larger sample area than traditional round stubs
- Fully compatible with all existing tools, grippers, SEM holders and specimen preparation equipment

18187-12 PELCO® Q SEM Pin Stub, 12.7 x 12.7mm (0.5” x 0.5”) .. each
18187-19 PELCO® Q SEM Pin Stub, 19 x 19mm (0.75” x 0.75”) ... each
18187-25 PELCO® Q SEM Pin Stub, 25.4 x 25.4mm (1” x 1”) .. each

ENGRAVED PELCO® Q SEM PIN STUBS

PELCO® Q Pin Stubs are also available with engraved lines to accommodate multiple small samples on one stub and to simplify indexing. The sharp notch can be used as a master reference point and the engraved crosses can be used as sub-reference points; ideal for low magnification applications. The engraved lines divide the PELCO® Q Pin Stubs in equally sized squares of 6.3 x 6.3mm (0.25” x 0.25”).

18190-124 PELCO® Q SEM Pin Stub, 12.7 x 12.7mm (0.5” x 0.5”), 4 Divisions each
18190-199 PELCO® Q SEM Pin Stub, 19 x 19mm (0.75” x 0.75”), 9 Divisions each
18190-2516 PELCO® Q SEM Pin Stub, 25.4 x 25.4mm (1” x 1”), 16 Divisions each
Best resolution and highest throughput when results matter.

- Octane series SDDs with advanced electronics providing three times the throughput of a typical SDD
- Best resolution EDS data at previously unmatched speeds
- Intuitive and easy to use TEAM™ interface
- Fast data collection with high quality results
- Seamless integration with EBSD and WDS

Power your next insight with EDAX. edax.com/TEAM-EDS
REACH FOR THE HIGHEST RESOLUTION AT THE ATOMIC SCALE

ARM300F
THE GRAND ARM

Proven performance — unmatched raw data.
The highest resolution commercially-available Atomic Resolution TEM in the world.

- 63 picometer point-to-point resolution guaranteed
- 80-300 kV cold FEG
- Large solid angle SDD for atomic level chemistry
- Available with or without Cs correctors for TEM and STEM
- All-JEOL column optics and software
- Ultimate stability
- Renowned service and support

www.jeolusa.com
salesinfo@jeol.com • 978-535-5900
<table>
<thead>
<tr>
<th>TYPES</th>
<th>AVAILABLE EDGE LENGTHS</th>
<th>AVAILABLE INCL. ANGLES</th>
<th>RANGE OF SECTION THICKNESS</th>
<th>APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU</td>
<td>1 to 8 mm</td>
<td>45° 35° 55°</td>
<td>25nm to 200nm</td>
<td>Standard ultramicrotomy sectioning of biological and other material specimens.</td>
</tr>
<tr>
<td>CW</td>
<td>1 to 8 mm</td>
<td>45° 35°</td>
<td>50nm to 1µm</td>
<td>Frozen specimens sectioned wet with liquids like ethylene glycol. Set in "W" style boat.</td>
</tr>
<tr>
<td>CD</td>
<td>1 to 8 mm</td>
<td>45° 35°</td>
<td>50nm to 1µm</td>
<td>Frozen specimens sectioned dry. Set in "D" style boat.</td>
</tr>
<tr>
<td>TS</td>
<td>1 to 8 mm</td>
<td>45° 55°</td>
<td>50nm to 2µm</td>
<td>Thick sections or alternating thick and thin sections.</td>
</tr>
<tr>
<td>MT</td>
<td>2 to 8 mm</td>
<td>45° 55°</td>
<td>50nm to 2µm</td>
<td>Industrial materials sectioning. Not tested to the same ultra high standards as the types above, hence their lower price.</td>
</tr>
<tr>
<td>LC</td>
<td>4 to 12 mm</td>
<td>45° 55°</td>
<td>0.1µm to 5µm</td>
<td>Frozen specimens to be examined at light microscopy magnifications. Set in "D" or "W" style boat.</td>
</tr>
<tr>
<td>LH</td>
<td>4 to 12 mm</td>
<td>45° 55°</td>
<td>0.1µm to 5µm</td>
<td>Sections to be examined at light microscopy magnifications.</td>
</tr>
</tbody>
</table>

* The standard included angle of 45° is suitable for most applications. Knives with 35° reduce morphological deformation but the edge is more fragile. 55° is recommended for routine hard specimen sectioning. Custom angles and lengths available per request at no extra cost.

MICRO STAR diamond knives are manufactured exclusively from the purest quality natural diamonds, using the most advanced technologies. Our quality inspection laboratory includes two TEM one SEM and one Atomic Force Microscope.

MICRO STAR is the only diamond knife whose unsurpassed quality is backed by one year guarantee, and two month testing period before payment.

Every MICRO STAR diamond knife is packaged in a precision hand crafted wood case for life time shipping and storage protection.

Per request, you may get your resharpened knife set in a new MICRO STAR boat and box at no extra cost.
it’s here!
EMS is happy to announce our new
Full Line Catalog XVII
loaded with hundreds of new products...
loaded with helpful technical tips...
loaded with techniques and applications...
The most comprehensive source for all fields of microscopy and general laboratory research

It is with great pleasure we continue to offer to you our outstanding selection of Chemicals for Electron Microscopy, Light Microscopy and Histology; the industry-leading line of Aurion ImmunsGold Reagents; the highest quality, most precise sectioning and incomparable durability DIATOME Diamond Knives line, our super line of EMS Sputter and Carbon Coaters, world-renowned Technovit® embedding resins, and the list goes on. Most of these lines have been enhanced with new options. We hope that this catalog exceeds your expectations and we look forward to working with you.

NEW: EVOS Digital Microscopes
NEW: HistoPro® 200
NEW: FLOWM™ Cell Strainers
NEW: EMS High-End Medical Tweezers
NEW MODELS: Vibrating Microtomes
NEW: Athene Grids
NEW: DIATOME manipulator
NEW MODELS: Branson Ultrasonic Benchtop Cleaners
NEW: Rotary Diamond Micro-Engraver Pen
NEW: Turbo-Pumped Sputter/ Carbon Coater for Glove Box
NEW: INFINITY 3-SUR Research-Grade Microscopy Camera

REQUEST YOUR COPY AT
www.emsdiasum.com

Electron Microscopy Sciences
P.O. Box 550 • 1560 Industry Rd. • Hatfield, Pa 19440
Tel: (215) 412-8400 • Fax: (215) 412-8450
email: sgkock@aol.com or stacie@ems-secure.com

look for us...
YouTube Facebook Twitter
EXPERIENCE THE LATEST
InTouchScope research grade SEM

iT300LV

- Multi-touch interface
- High throughput microanalysis
- High vacuum to extended pressure
- Intuitive operation

Smart analytical port geometries
Unique in-chamber stage

Geological thin section, elemental overlay
1 frame, 9.8 seconds

Dual EDS, lead/tin wave solder powder

Silica beads, low kV SE image

JEOL
Solutions for Innovation

www.jeolusa.com
salesinfo@jeol.com • 978-535-5900
Speed, precision and confidence when results matter.

- Combines the ease of use of the TEAM™ platform with the analytical power of OIM™ for state of the art microstructural characterization for all users
- Fastest EBSD cameras on the market combine high speed collection with high precision measurements for results without compromise
- Dynamic live mapping allows for real time data analysis
- World-class triplet indexing routines for confidence in your results

Power your next insight with EDAX.
edax.com/TEAM-EBSD
MICRO STAR BOAT STYLES

STANDARD BOAT WITH OVAL CAVITY. BLACK ANODIZED. SUPPLIED WITH ALL NEW KNIVES EXCEPT CRYO AND KNIVES LARGER THAN 7mm. UNLESS OTHERWISE REQUESTED.

WET CRYO SECTIONING BOAT. MADE OF NON GLARE STAINLESS STEEL. CYLINDRICAL CAVITY AND 6" INCLINED TOP.

DRY CRYO SECTIONING BOAT. MADE OF NON GLARE STAINLESS STEEL.

OVAL CAVITY BOAT. 6" INCLINED TOP. AVAILABLE IN NON GLARE BLACK, GOLD OR BLUE ANODIZING.

CYLINDRICAL CAVITY BOAT. 6" INCLINED TOP. AVAILABLE IN NON GLARE BLACK, GOLD OR BLUE ANODIZING.

WIDE OVAL CAVITY BOAT. BLACK ANODIZED.

NARROW BOAT WITH DEEP CYLINDRICAL CAVITY. BLACK ANODIZED.

LARGE CYLINDRICAL CAVITY BOAT. 6" INCLINED TOP. AVAILABLE IN NON GLARE BLACK, GOLD OR BLUE ANODIZING. SUPPLIED WITH 7mm AND LARGER KNIVES.
PELCO® Q Multi-Pin Stub Holders comprise a number of helpful features.

- Reference notch for intrinsic indexing
- Engraved lines for alignment with the X and Y axis of the SEM stage
- Spring-loaded pin clamping for quick and easy loading
- Simple X-Y movements to go to the next stub
- Numbered positions for quick reference
- Efficient coverage when used with the square PELCO® Q Pin Stubs
- Removable pin for imaging with light microscopes
- Fully compatible with existing conventional pin stubs

Compatible with SEMs, FESEMs, SEM/FIB systems from FEI/Philips, Tescan, Cambridge, Leica, Amray and CamScan. Also suitable for Zeiss/LEO instruments if they can accommodate the longer 9mm pin instead of the standard 6mm pin. Available for 4, 8, 16, 24, 36 and 48 PELCO® Q Pin Stubs or standard pin stubs with 12.7mm (0.5") head.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Each Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15334-22</td>
<td>PELCO® Q Multi-Pin Stub Holder for 4 ea.</td>
<td>12.7mm (0.5") Pin Stubs</td>
<td></td>
</tr>
<tr>
<td>15334-33</td>
<td>PELCO® Q Multi-Pin Stub Holder for 8 ea.</td>
<td>12.7mm (0.5") Pin Stubs</td>
<td></td>
</tr>
<tr>
<td>15334-44</td>
<td>PELCO® Q Multi-Pin Stub Holder for 16 ea.</td>
<td>12.7mm (0.5") or 4 ea. 25.4mm (1") Pin Stubs</td>
<td></td>
</tr>
<tr>
<td>15334-55</td>
<td>PELCO® Q Multi-Pin Stub Holder for 24 ea.</td>
<td>12.7mm (0.5") Pin Stubs</td>
<td></td>
</tr>
<tr>
<td>15334-66</td>
<td>PELCO® Q Multi-Pin Stub Holder for 36 ea.</td>
<td>12.7mm (0.5") or 9 ea. 25.4mm (1") Pin Stubs</td>
<td></td>
</tr>
<tr>
<td>15334-77</td>
<td>PELCO® Q Multi-Pin Stub Holder for 48 ea.</td>
<td>12.7mm (0.5") Pin Stubs</td>
<td></td>
</tr>
</tbody>
</table>
DiATOME
diamond knives
the highest quality...
the most precise sectioning...
incomparable durability

building on 40 years of innovation

ultra 45° • cryo • histo • ultra 35°
histo jumbo • STATIC LINE II • cryo immuno
ultra sonic • ultra AFM & cryo AFM

NEW!... trimtool 20 and trimtool 45
Finally, one trimming tool for all of your trimming needs, be it at room or cryo temperatures.

DiATOME U.S.
R.O. Box 550 • 1560 Industry Rd. • Hatfield, Pa 19440
Tel: (215) 412-8390 • Fax: (215) 412-8450
email: sgkcck@aol.com • stacle@ems-secure.com
www.emsciasum.com